
BFBC2 PC Remote Administration Protocol

This is the remote-administration protocol used by BFBC2 PC Server R9 prerelease.

It is work-in-progress; features are first added to the game, and then controlling commands are added to the

Remote Administration interface.

Contents
About ... 2

Low-level protocol .. 2

Packet format .. 2

int32 .. 2

Word ... 2

Packet .. 2

Protocol behaviour.. 3

Comments ... 3

Parameter formats .. 4

String ... 4

Boolean ... 4

HexString ... 4

Password ... 4

Filename .. 4

Clantag .. 4

Player name .. 4

Team ID ... 4

Squad ID .. 4

Player subset ... 5

Timeout ... 5

Id-type ... 5

Player info block .. 5

Server events .. 6

Summary ... 6

Player events ... 6

Misc ... 7

Client commands .. 8

Summary ... 8

Misc ... 9

Query... 11

Communication ... 11

Level .. 11

Kick/List players .. 13

Banning ... 13

Reserved slots ... 14

Maplist .. 15

Variables.. 17

About
This document describes how to communicate with the Remote Administration interface that is present in BFBC2 PC

servers. The protocol is bidirectional, and allows clients to send commands to the server as well as the server to send

events to clients.

The protocol is designed for machine-readability, not human-readability. It is the basis for all graphical remote

administration tools.

Low-level protocol

Packet format
int32

32-bit unsigned integer

1 byte bits 7..0 of value

 1 byte bits 15..8 of value

 1 byte bits 23..16 of value

 1 byte bits 31..24 of value

Word

int32 Size Number of bytes in word, excluding trailing null byte

char[] Content Word contents -- must not contain any null bytes

char Terminator Trailing null byte

Packet

int32 Sequence Bit 31: 0 = The command in this command/response pair originated on the server

 1 = The command in this command/response pair originated on the client

 Bit 30: 0 = Request, 1 = Response

Bits 29..0: Sequence number (this is used to match requests/responses in a full duplex

transmission)

int32 Size Total size of packet, in bytes

int32 NumWords Number of words following the packet header

Word[N] Words N words

A packet cannot be more than 16384 bytes in size.

Protocol behaviour
The client communicates with the server using a request/response protocol. Each request contains a sequence

number which grows monotonically, a flag which indicates whether the command originated on the client or the

server, and one word containing the command name. In addition to this, a command can have zero or more

arguments.

Every request must be acknowledged by a response. The response includes the the same sequence number, and the

same origin flag. However, it has the response flag set.

Sequence numbers are unique within one server-client connection. Thus, the same sequence number can be used

when the server is communicating with different clients.

Responses must contain at least one word. The first word can be one of the following:

 OK - request completed successfully

 UnknownCommand - unknown command

 InvalidArguments - Arguments not appropriate for command

 <other> - command-specific error

 OK is the only response which signifies success.

 Subsequent arguments (if any) are command-specific.

The server is guaranteed to adher to this protocol specification. If the client violates the protocol, the server may

close the connection without any prior notice.

Comments
The format of the Words portion of a packet is designed such that it shall be easy to split it into individual words in

both C++ and Python. Any numerical arguments are always transferred in string form (not in raw binary form).

The protocol is designed to be fully bidirectional.

Parameter formats

String
An 8bit ASCII string. Must not contain any characters with ASCII code 0.

Boolean
Two possible values:

 true

 false

HexString
A stream of hexadecimal digits. The stream must always contain an even number of digits. Allowed characters are:

0123456789ABCDEF

Password
A password is from 0 up to 16 characters in length, inclusive. The allowed characters are:

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789

Filename
A filename is from 1 up to 240 characters in length, inclusive. The allowed characters are:

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789._-

Clantag
A clan tag is from 0 to an unknown number of characters in length. At the time of writing, it is unclear which the

allowed characters are.

Player name
The “player name” (referred to as “Soldier name” in-game) is the persona name which the player chose when

logging in to EA Online. One EA Account can have multiple personas.

A player has a name from 4 to 16 characters in length, inclusive. The allowed characters are:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopqrstuvwxyz

0123456789

_ - & () * + . / : ; < = > ? [] ^ { | } ~ <space>

When a player is creating a new persona, it is compared against all other persona names; the new name must be

unique. The following characters are ignored during the comparison:

- _ <space>

Team ID

An integer.

Team 0 is neutral. Depending on gamemode, there are up to 16 non-neutral teams, numbered 1..16.

Squad ID
An integer.

Squad 0 is “no squad”. Depending on gamemode, there are up to 16 squads numbered 1..16.

Note that squad ID are local within each team; that is, to uniquely identify a squad you need to specify both a Team

ID and a Squad ID.

Player subset
Several commands – such as admin.listPlayers – take a player subset as argument.

A player subset is one of the following:

 all - all players on the server

 team <team number: integer> - all players in the specified team

 squad <team number: integer> <squad number: integer> - all players in the specified team+squad

 player <player name: string> - one specific player

Timeout
Some commands, such as bans, take a timeout as argument.

A timeout is one of the following:

 perm - permanent

 round - until end of round

 seconds <number of seconds: integer> - number of seconds

Id-type
Some commands, such as bans, take an id-type as argument

An id-type is one of the following:

 name - Soldier name

 ip - IP address

 guid - Player guid

Player info block
The standard set of info for a group of players contains a lot of different fields. To reduce the risk of having to do

backwards-incompatible changes to the protocol, the player info block includes some formatting information.

 <number of parameters> - number of parameters for each player

 N x <parameter type: string> - the parameter types that will be sent below

 <number of players> - number of players following

 M x N x <parameter value> - all parameter values for player 0, then all parameter

 values for player 1, etc

Current parameters:

 name string - player name

 guid GUID - player GUID, or “” if GUID is not yet known

 teamId Team ID - player’s current team

 squadId Squad ID - player’s current squad

 kills integer - number of kills, as shown in the in-game scoreboard

 deaths integer - number of deaths, as shown in the in-game scoreboard

 score integer - score, as shown in the in-game scoreboard

 ping integer - ping (ms), as shown in the in-game scoreboard

Server events

Most commands require the client to be logged in. Before the client has logged in, only 'login.plainText',

'login.hashed', 'logout', 'version', 'serverInfo' and 'quit' commands are available.

Summary
Command Description

player.onJoin Player with name <soldier name> has joined the server

player.onAuthenticated Player with name <soldier name> has been authenticated + got GUID

player.onLeave with name <soldier name> has left the server

player.onKill Player with name <killing soldier name> has killed <killed soldier name>

player.onChat Chat message has been sent to a group of people

player.onKicked Player with name <soldier name> has been kicked

punkBuster.onMessage PunkBuster server has output a message

server.onLoadingLevel Level is loading

server.onLevelStarted Level is started

player.onSquadChange Player might have changed squad

player.onTeamChange Player might have changed team

Player events
Request: player.onJoin <soldier name: string>

Response: OK

Effect: Player with name <soldier name> has joined the server

Request: player.onAuthenticated <soldier name: string> <player GUID: guid>

Response: OK

Effect: Player with name <soldier name> has been authenticated, and has the given GUID

Request: player.onLeave <soldier name: string>

Response: OK

Effect: Player with name <soldier name> has left the server

Request: player.onKill <killing soldier name: string> <killed soldier name: string>

Response: OK

Effect: Player with name <killing soldier name> has killed <killed soldier name>

 ##RSP Comment: onKill does not specify the weapon used to kill you opponent. This would be really

 handle to monitor our ranked servers and immediately identify if there is anything suspicious (stat-

 padding) going on

Request: player.onChat <source soldier name: string> <text: string> <target group: player subset>

Response: OK

Effect: Player with name <source soldier name> (or the server, or the server admin) has sent chat

 message <text> to some people

Comment: The chat text is as represented before the profanity filtering

 If <source soldier name> is “Server”, then the message was sent from the server rather than from an

 actual player

 If sending to a specific player, and the player doesn’t exist, then the target group will be “player” “”

Request: player.onKicked <soldier name: string> <reason: string>

Response: OK

Effect: Player with name <soldier name> has been kicked

Request: player.onSquadChange <soldier name: player name> <team: Team ID> <squad: Squad ID>

Response: OK

Effect: Player might have changed squad

Request: player.onTeamChange <soldier name: player name> <team: Team ID> <squad: Squad ID>

Response: OK

Effect: Player might have changed team

Misc
Request: punkBuster.onMessage <message: string>

Response: OK

Effect: PunkBuster server has output a message

Comment: The entire message is sent as a raw string. It may contain newlines and whatnot.

Request: server.onLoadingLevel <level name: string>

Response: OK

Effect: Level is loading

Request: server.onLevelStarted

Response: OK

Effect: Level is started

Client commands
Most commands require the client to be logged in. Before the client has logged in, only 'login.plainText',

'login.hashed', 'logout', 'version', 'serverInfo', 'listPlayers' and 'quit' commands are available.

Summary
Command Description

login.plainText <password> Attempt to login to game server with password

login.hashed Retrives the salt, used in the hashed password login process

login.hashed <passwordHard> Sends a hashed password to the server, in an attempt to log in

logout Logout from game server

quit Disconnect from server

version Reports game server type, and build ID

listPlayers <players> Return list of a group of players on the server, without GUIDs

eventsEnabled <enabled> Set whether or not the server will send events to the current connection

help Report which commands the server knows about

admin.runscript <filename> Process file, runs script lines one-by-one, aborting processing upon error

punkBuster.pb_sv_command <command> Send a raw PunkBuster command to the PunkBuster server

serverinfo Query for brief server info

admin.yell <message, duration, players> Display a message, very visibly on players’ screens

admin.say <message, players> Send a chat message to a group of players

admin.runNextLevel Switch to next level

admin.currentLevel Return current level name

mapList.nextLevelIndex Get index of next level to be run

mapList.nextLevelIndex <index> Set index of next level to be run

admin.restartMap End current round, and restart with the same map

admin.supportedMaps <play list> Retrieve maplist of maps supported in this play list

admin.setPlaylist <name> Set the play list on the server

admin.getPlaylist Get the current play list for the server

admin.getPlaylists Get the play lists for the server

admin.kickPlayer <soldier name, reason> Kick player <soldier name> from server

admin.listPlayers <players> Return list of a group of players on the server

banList.load Load list of banned players/IPs/GUIDs from file

banList.save Save list of banned players/IPs/GUIDs to file

banList.add <id-type, id, timeout, reason> Add player/IP/GUID to ban list for a certain amount of time

banList.remove <id-type, id> Remove player/IP/GUID from ban list

banList.clear Clears ban list

banList.list Return list of banned players/IPs/GUIDs

reservedSlots.load Load list of reserved soldier names from file

reservedSlots.save Save list of reserved soldier names to file

reservedSlots.addPlayer <name> Add <name> to list of players who can use the reserved slots

reservedSlots.removePlayer <name> Remove <name> from list of players who can use the reserved slots

reservedSlots.clear Clear reserved slots list

reservedSlots.list Retrieve list of players who can utilize the reserved slots

mapList.load Load list of map names from file

mapList.save Save maplist to file

mapList.list Retrieve current maplist

mapList.clear Clears maplist

mapList.remove <index> Remove map from list

mapList.append <name> Add map with name <name> to end of maplist

mapList.insert <index, name> Add map with name at the specified index to the maplist

vars.adminPassword <password> Set the admin password for the server

vars.gamePassword <password> Set the game password for the server

vars.punkBuster <enabled> Set if the server will use PunkBuster or not

vars.hardCore Set hardcore mode

vars.ranked Set ranked or not

vars.rankLimit <rank> Set the highest rank allowed on to the server

vars.teamBalance <enabled> Set if the server should autobalance

vars.friendlyFire <enabled> Set if the server should allow team damage

vars.currentPlayerLimit Retrieve the current maximum number of players

vars.maxPlayerLimit Retrieve the server-enforced maximum number of players

vars.playerLimit <nr of players> Set desired maximum number of players

vars.bannerUrl <url> Set banner url

vars.serverDescription <description> Set server description

vars.killCam <enabled> Set if killcam is enabled

vars.miniMap <enabled> Set if minimap is enabled

vars.crossHair <enabled> Set if crosshair for all weapons is enabled

vars.3dSpotting <enabled> Set if spotted targets are visible in the 3d-world

vars.miniMapSpotting <enabled> Set if spotted targets are visible on the minimap

vars.thirdPersonVehicleCameras <enabled> ToDo

Misc
Request: login.plainText <password: string>

Response: OK - Login successful, you are now logged in regardless of prior status

Response: InvalidPassword - Login unsuccessful, logged-in status unchanged

Response: PasswordNotSet - Login unsuccessful, logged-in status unchanged

Response: InvalidArguments

Effect: Attempt to login to game server with password <password>

Comments: If you are connecting to the admin interface over the internet, then use login.hashed instead to avoid

having evildoers sniff the admin password

Request: login.hashed

Response: OK <salt: HexString> - Retrieved salt for the current connection

Response: PasswordNotSet - No password set for server, login impossible

Response: InvalidArguments

Effect: Retrieves the salt, used in the hashed password login process

Comments: This is step 1 in the 2-step hashed password process. When using this people cannot sniff your admin

password.

Request: login.hashed <passwordHash: HexString>

Response: OK - Login successful, you are now logged in regardless of prior status

Response: PasswordNotSet - No password set for server, login impossible

Response: InvalidPasswordHash - Login unsuccessful, logged-in status unchanged

Response: InvalidArguments

Effect: Sends a hashed password to the server, in an attempt to log in

Comments: This is step 2 in the 2-step hashed password process. When using this people cannot sniff your admin

password.

Request: logout

Response: OK - You are now logged out regardless of prior status

Response: InvalidArguments

Effect: Logout from game server

Request: quit

Response: OK

Response: InvalidArguments

Effect: Disconnect from server

Request: version

Response: OK BFBC2 <version>

Response: InvalidArguments

Effect: Reports game server type, and build ID

Comments: Game server type and build ID uniquely identify the server, and the protocol it is running.

Request: listPlayers <players: player subset>

Response: OK <player info>

Response: InvalidArguments

Effect: Return list of all players on the server, but with zeroed out GUIDs

Request: eventsEnabled [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set whether or not the server will send events to the current connection

Request: help

Response: OK <all commands availble on server, as separate words>

Response: InvalidArguments

Effect: Report which commands the server knows about

Request: admin.runScript <filename: filename>

Response: OK

Response: InvalidArguments

Response: InvalidFileName - The filename specified does not follow filename rules

Response: ScriptError <line> <original error…> - Script failed at line <line>, with the given error

Effect: Process file, executing script lines one-by-one, aborting processing upon error

Request: punkBuster.pb_sv_command <command: string>

Response: OK - Command sent to PunkBuster server module

Response: InvalidArguments

Response: InvalidPbServerCommand - Command does not begin with “pb_sv_”

Effect: Send a raw PunkBuster command to the PunkBuster server

Comment: The entire command is to be sent as a single string. Don’t split it into multiple words.

Query

Request: serverInfo

Response: OK <serverName> <current playercount> <max playercount> <current gamemode> <current map>

Response: InvalidArguments

Effect: Query for brief server info.

Comments: This command can be performed without being logged in.

Communication
Request: admin.yell <message: string> <duration [in ms]: integer> <players: player subset>

Response: OK

Response: InvalidArguments

Response: TooLongMessage

Response: InvalidDuration

Effect: Display a message, very visibly on players’ screens, for a certain amount of time. The duration must be

more than 0 and at most 60000 ms. The message must be less than 100 characters long.

Request: admin.say <message: string> <players: player subset>

Response: OK

Response: InvalidArguments

Response: TooLongMessage

Effect: Send a chat message to players. The message must be less than 100 characters long.

Level
Request: admin.runNextLevel

Response: OK

Response: InvalidArguments

Effect: Switch to next level

Comments: Always successful

Request: admin.currentLevel

Response: OK <name>

Response: InvalidArguments

Effect: Return current level name

Request: mapList.nextLevelIndex

Response: OK

Response: InvalidArguments

Effect: Get index of next level to be run

Request: mapList.nextLevelIndex <index: integer>

Response: OK

Response: InvalidArguments

Response: InvalidIndex - Level index not available in server map list

Effect: Set index of next level to be run to <index>

Request: admin.restartMap

Response: OK

Response: InvalidArguments

Response: LevelNotAvailable - server currently has no level loaded / level not available on server

Effect: End current round, and restart with the same map

Request: admin.supportedMaps <play list: string>

Response: OK <map names>

Response: InvalidArguments

Response: InvalidPlaylist <play list> - Play list doesn't exist on server

Effect: Retrieve maplist of maps supported in this play list

Request: admin.setPlaylist <name: string>

Response: OK - Play list was changed

Response: InvalidArguments

Response: InvalidPlaylist - Play list doesn't exist. Should be RUSH, CONQUEST, SQDM or SQRUSH.

Effect: Set the play list on the server.

Comments: Will only use maps supported for this play list. So the mapList might be invalid

Delay: Change occurs after end of round

Request: admin.getPlaylist

Response: OK <play list>

Response: InvalidArguments

Effect: Get the current play list for the server

Request: admin.getPlaylists

Response: OK <play lists>

Response: InvalidArguments

Effect: Get the play lists for the server

Kick/List players

Request: admin.kickPlayer <soldier name: player name, reason: string>

Response: OK - Player did exist, and got kicked

Response: InvalidArguments

Response: PlayerNotFound - Player name doesn't exist on server

Effect: Kick player <soldier name> from server

Comments: Reason text is optional. Default reason is “Kicked by administrator”.

Request: admin.listPlayers <players: player subset>

Response: OK <player info>

Response: InvalidArguments

Effect: Return list of all players on the server

Banning
Request: banList.load

Response: OK

Response: InvalidArguments

Response: InvalidIdType

Response: InvalidBanType

Response: InvalidTimeStamp - A time stamp could not be read

Response: IncompleteBan - Incomplete ban entry at end of file

Response: AccessError - Could not read from file

Effect: Load list of banned players/IPs/GUIDs from file

Comment: 5 lines (Id-type, id, ban-type, time and reason) are retrieved for every ban in the list.

 Entries read before getting InvalidIdType, InvalidBanType, InvalidTimeStamp and IncompleteBan

 is still loaded.

Request: banList.save

Response: OK

Response: InvalidArguments

Response: AccessError - Could not save to file

Effect: Save list of banned players/IPs/GUIDs to file

Comment: 5 lines (Id-type, id, ban-type, time and reason) are stored for every ban in the list.

 Every line break has windows “\r\n” characters.

Request: banList.add <id-type: id-type> <id: string> <timeout: timeout> <reason: string>

Response: OK

Response: InvalidArguments

Response: BanListFull

Effect: Add player to ban list for a certain amount of time

Comments: Adding a new player/IP/GUID ban will replace any previous ban for that player/IP/GUID

 timeout can take three forms:

 perm - permanent [default]

 round - until end of round

 seconds <integer> - number of seconds until ban expires

 Id-type can be any of these

 name – A soldier name

 ip – An IP address

 guid – A player guid

 Id could be either a soldier name, ip address or guid depending on id-type.

 Reason is optional and defaults to “Banned by admin”; max length 80 chars.

 The ban list can contain at most 100 entries.

Request: banList.remove <id-type: id-type> <id: string>

Response: OK

Response: InvalidArguments

Response: NotFound - Id not found in banlist; banlist unchanged

Effect: Remove player/ip/guid from banlist

Request: banList.clear

Response: OK

Response: InvalidArguments

Effect: Clears ban list

Request: banList.list

Response: OK <player ban entries>

Response: InvalidArguments

Effect: Return list of banned players/IPs/GUIDs.

Comment: The list starts with a number telling how many bans the list is holding.

 After that, 5 words (Id-type, id, ban-type, time and reason) are received for every ban in the list.

Reserved slots

Request: reservedSlots.configFile [filename: filename] - disabled for security reasons atm

Response: OK - for set option

Response: OK <filename> - for get option

Response: InvalidArguments

Response: InvalidFileName - Filename does not follow filename rules

Effect: Set name of reserved slots configuration file

Request: reservedSlots.load

Response: OK

Response: InvalidArguments

Response: AccessError - File not found; internal reserved slots list is now empty

Effect: Load list of soldier names from file. This is a file with one soldier name per line.

 If loading succeeds, the reserved slots list will get updated.

 If loading fails, the reserved slots list will remain unchanged.

Request: reservedSlots.save

Response: OK

Response: InvalidArguments

Response: AccessError - Error while saving

Effect: Save list of reserved soldier names to file. This is a file with one soldier name per line.

Comment: If saving fails, the output file may be unchanged or corrupt.

Request: reservedSlots.addPlayer <soldier name: player name>

Response: OK

Response: InvalidArguments

Response: PlayerAlreadyInList - Player is already in the list; reserved slots list unchanged

Effect: Add <soldier name> to list of players who can use the reserved slots.

Request: reservedSlots.removePlayer <soldier name: player name>

Response: OK

Response: InvalidArguments

Response: PlayerNotInList - Player does not exist in list; reserved slots list unchanged

Effect: Remove <soldier name> from list of players who can use the reserved slots.

Request: reservedSlots.clear

Response: OK

Response: InvalidArguments

Effect: Clear reserved slots list

Request: reservedSlots.list

Response: OK <soldier names>

Response: InvalidArguments

Effect: Retrieve list of players who can utilize the reserved slots

Maplist

Request: mapList.configFile [filename: filename] - disabled for security reasons atm

Response: OK - for set option

Response: OK <filename> - for get option

Response: InvalidArguments

Response: InvalidFileName - Filename does not follow filename rules

Effect: Set name of maplist configuration file

Request: mapList.load

Response: OK - Maplist loaded

Response: InvalidArguments

Response: AccessError - File not found, internal maplist is now empty

Response: InvalidPlaylist - Play list doesn’t exist. Should be RUSH, CONQUEST, SQDM or SQRUSH.

Response: InvalidMapName <name> - Map with name <name> doesn't exist in playlist/gamemode

Effect: Load list of map names from file. This is a file with one map name per line.

Comments: If loading succeeds, the maplist will get updated.

 If loading fails, the maplist will remain unchanged.

Request: mapList.save

Response: OK - Maplist saved

Response: InvalidArguments

Response: AccessError - Error while saving, on-disk maplist file possibly corrupted now

Effect: Save maplist to file. This is a file with one map name per line.

Comments: If saving fails, the output file may be unchanged or corrupt.

 Every line break has windows “\r\n” characters.

Request: mapList.list

Response: OK <map names>

Response: InvalidArguments

Effect: Retrieve current maplist

Request: mapList.clear

Response: OK

Response: InvalidArguments

Effect: Clears maplist

Comments: If server attempts to switch level while maplist is cleared, nasty things will happen

Request: mapList.remove <index: integer>

Response: OK - Map removed from list

Response: InvalidArguments

Response: InvalidIndex - Index doesn't exist in server map list

Effect: Remove map from list.

Request: mapList.append <name: string>

Response: OK - Map appended to list

Response: InvalidArguments

Response: InvalidMapName - Map doesn't exist on server

Effect: Add map with name <name> to end of maplist

Comment: Remember to specify playlist before adding maps

Request: mapList.insert <index: integer, name: string>

Response: OK - Map inserted to list

Response: InvalidArguments

Response: InvalidMapName - Map doesn’t exist on server or negative index

Effect: Add map with name at the specified index to the maplist

Variables

Request: vars.adminPassword [password: password]

Response: OK - for set operation

Response: OK <password> - for get operation

Response: InvalidArguments

Response: InvalidPassword - password does not conform to password format rules

Effect: Set the admin password for the server, use it with an empty string("") to reset

Request: vars.gamePassword [password: password]

Response: OK - for set operation

Response: OK <password> - for get operation

Response: InvalidArguments

Response: InvalidPassword - password does not conform to password format rules

Response: InvalidConfig - password can’t be set if ranked is enabled

Effect: Set the game password for the server, use it with an empty string("") to reset

Request: vars.punkBuster [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Response: InvalidConfig - punkbuster can’t be disabled if ranked is enabled

Response: StartupOnlyCallNotAllowed - this command can only be executed from startup.txt

Effect: Set if the server will use PunkBuster or not

Request: vars.hardCore [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set hardcore mode

Delay: Works after map change

Request: vars.ranked [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response InvalidArguments

Response: StartupOnlyCallNotAllowed - this command can only be executed from startup.txt

Effect: Set ranked or not. If enabled: game password will be removed and punkbuster enabled

Request: vars.rankLimit <rank: integer> ##QA: Says ‘OK’ but still allow higher ranked players to join

Response: OK - for set operation

Response: OK <rank: integer> - for get operation

Response: InvalidArguments

Effect: Set the highest rank allowed on to the server (integer value).

Comment: To disable rank limit use -1 as value

Request: vars.teamBalance [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if the server should autobalance

Request: vars.friendlyFire [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Response: LevelNotLoaded - for set operation

Effect: Set if the server should allow team damage

Delay: Works after round restart

Comment: Not available during level load.

Request: vars.currentPlayerLimit

Response: OK <nr of players: integer> - for get operation

Response: ReadOnly - if you try to send any arguments

Response: InvalidArguments

Effect: Retrieve the current maximum number of players

Comment: This value is computed from all the different player limits in effect at any given moment

Request: vars.maxPlayerLimit

Response: OK <nr of players: integer> - for get operation

Response: ReadOnly - if you try to send any arguments

Response: InvalidArguments

Effect: Retrieve the server-enforced maximum number of players

Comment: Setting the user-defined maximum number of players higher than this has no effect

Request: vars.playerLimit [nr of players: integer]

Response: OK - for set operation

Response: OK <nr of players: integer> - for get operation

Response: InvalidArguments

Response: InvalidNrOfPlayers - Player limit must be in the range 8..32

Effect: Set desired maximum number of players

Comment: The effective maximum number of players is also effected by the server provider, and the game

engine

Request: vars.bannerUrl [url: string]

Response: OK - for set operation

Response: OK <url: string> - for get operation

Response: InvalidArguments

Response: TooLongUrl - for set operation

Effect: Set banner url

Comment: The banner url needs to be less than 64 characters long

 The banner needs to be a 512x64 picture smaller than 127kb

 Example: admin.setBannerUrl http://www.example.com/banner.jpg

Request: vars.serverDescription <description: string>
Response: OK - for set operation
Response: OK <description: string> - for get operation
Response: InvalidArguments
Response: TooLongDescription - for set operation
Effect: Set server description
Comment: The description needs to be less than 400 characters long
 ##Request from RSPs: In addition being able to enter a new line would be great, BF2142 used the
 "|" character as newline.

Request: vars.killCam [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if killcam is enabled

Delay: Works after map switch

Request: vars.miniMap [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if minimap is enabled

Delay: Works after map switch

Request: vars.crossHair [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if crosshair for all weapons is enabled

Delay: Works after map switch

Request: vars.3dSpotting [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if spotted targets are visible in the 3d-world

Delay: Works after map switch

Request: vars.miniMapSpotting [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: Set if spotted targets are visible on the minimap

Delay: Works after map switch

Request: vars.thirdPersonVehicleCameras [enabled: boolean]

Response: OK - for set operation

Response: OK <enabled: boolean> - for get operation

Response: InvalidArguments

Effect: <todo>

Delay: Works after map switch

##QA: Works but is bugged. If you change the setting and someone is in a vehicle in 3rd person view when at end

of round, that player will be stuck in 3rd person view even though the setting should only allow 1st person view.

